United States Patent

US009246688B1

(12) 10y Patent No.: US 9,246,688 B1
Stickle 45) Date of Patent: Jan. 26, 2016
(54) DATASET LICENSING 8,725,648 B2* 52014 ROSS ..coovvvvviiiiniiiins 705/59
8,799,170 B2* 82014 Mallardo et al. 705/59
: . ; 8,861,937 B2* 10/2014 Ramaswamy et al ... 386/291
(71) Applicant: %Hslalon Technologies, Inc., Reno, NV 20050099825 AL* 57005 Coxotal ... " 538375
Us) 2007/0067309 Al* 3/2007 Kleinetal.ccccoeeeneeee. 707/10
. 2007/0187266 Al* 82007 Porter et al. 206/232
(72) Inventor: Thomas Charles Stickle, Saint James, 2008/0005086 Al* 1/2008 .. 707/3
NY (US) 2008/0017722 Al* 1/2008 C e ... 235/494
2008/0208692 Al* 82008 Garave_nti et al._ 705/14
(73) Assignee: Amazon Technologies, Inc., Seattle, WA 2013/0086693 Al* 42013 ;aZfrdlere'Papmeau 1698
Us) 2013/0326215 Al* 12/2013 Leggette et al. .. 713/156
)) o) 2014/0172951 Al* 62014 Varney etal. oooooo..... 709/203
(*) Notice: Subject to any disclaimer, the term of this 2014/0180826 Al* 6/2014 Boal 705/14.66
patent is extended or adjusted under 35 2014/0189525 Al* 7/2014 Trevisioletal. 715/745
U.S.C. 154(b) by 0 days. 2014/0201126 A1* 7/2014 Zadehetal. 706/52
2014/0279838 Al* 9/2014 Tsirogiannis et al. ... 707/603
. 2014/0282016 Al* 9/2014 Hosier, Jr. ..ccoevvrernene 715/733
(21) Appl. No.: 14/037,124 2014/0337375 AL* 112014 YUe .ooovoorcererren GOGF 17/30424
707/769
(22) Filed: Sep. 25, 2013 2014/0337461 Al* 11/2014 Lipstone et al. 709/213
(51) Int.CL * cited by examiner
HO4L 29/06 (2006.01)
HO4L 9/32 (2006.01) Primary Examiner — Mahfuzur Rahman
(52) US.CL (74) Attorney, Agent, or Firm — Thorpe North & Western
CPC HO4L 9/3247 (2013.01); HO4L 9/3223 LLP
(2013.01)
(58) Field of Classification Search (57) ABSTRACT
USPC ittt 726/17]]])]
See application file for complete search history. A data licensing technology is described. A dataset is pro-
vided with license tags attached to data items in the dataset. A
56 References Cited license file is deployed having a license tag. A query is run
(56) ploy 2 2. A query

U.S. PATENT DOCUMENTS

7,523,132 B2* 4/2009 Altounian et al.
8,429,181 B2* 4/2013 Gutstadtetal. 707/758

against the dataset with the license file, and data items are
filtered out that do not have the license tag attached.

17 Claims, 9 Drawing Sheets

o 100

Data Store
110

Dataset Provider

Data Engine

116

Internet License
104 File

| 120

<

Dataset Consumer

User Device
108

U.S. Patent Jan. 26, 2016 Sheet 1 of 9

US 9,246,688 B1

(\ 100

Dataset Provider
102

Data Store
110
Data Engine
116
AN

@r\, 122
v 118

Internet License
104 File
£ @«\, 120
) 4 -\/|-

Dataset Consumer
106

User Device
108

FIG. 1

U.S. Patent

Jan. 26, 2016 Sheet 2 of 9

US 9,246,688 B1

Dataset
200

Data Item

Data Item

Data Itcm

Data Ttem

Data Item
202

Data
204

License Tag
206

FIG. 2

US 9,246,688 B1

Sheet 3 of 9

Jan. 26, 2016

U.S. Patent

DHOD
PDHOS

Distributed Database

S
o)

FIG. 3

U.S. Patent

Jan. 26, 2016

Sheet 4 of 9

US 9,246,688 B1

Virtualized Compute Service

Server 400 Server
Computer | 4004 402d A Computer
Instance| |Instance Instance| |Instance
406a Manager 406d Manager
% \
408a 408d
402b
Server 450
Computer
Instance| [Instance Network Server Providing API
406b Manager 430 Response
Q 404
7
408b)
402¢ 410_A Management
Server Component
Computer 412 ,
Instance| |Instance] ACuto Scaling
406¢ Manager ! omponent
. 414 Deployment Component
To Wide Area 416
40’80 Network (WAN) T Customer Account
440 Server Computer

FIG. 4

U.S. Patent

Jan. 26, 2016 Sheet 5 of 9 US 9,246,688 B1
502 = 500
Virtualized Compute Service
Node Node Node Controller
Node
@ 512a @ 512b hlg 512¢ 516
Computer Cluster
Node Node Node
320
<D <P S ss6
ﬁ!ﬂ 512d ﬁ!ﬂ 512e @ 512f Datasct\Managcr
License Generator
Node Node Node License Verifier
. Query Executor|
. . . % Licensing 53%
ﬁ!ﬂ ﬁ!l’ Manager
2.5 512¢g = 512h @ 512i 540 ﬁg
Internet
308
Dataset Consumer 510
™ 524
526’_, Licensce File 'l
528"\ Application
1] Licensc Tag Files
530"\
I Signed .
D
Hash User Device
522

FIG. 5

U.S. Patent Jan. 26, 2016 Sheet 6 of 9

Dataset Provider

602

606 Generate_ License
File

608

l

US 9,246,688 B1

o 600

Dataset Consumer

60

License File

Distribute Application

|
616 Run
‘/? Application
|

| 618

l

with License File

Results:

FIG. 6

l
|
|
|
|
|
s, 4o
|
|
|
|
|
|
|
|
|
|
g
|
|
|

U.S. Patent Jan. 26, 2016 Sheet 7 of 9 US 9,246,688 B1

f_ 700

Provide a dataset with license tags attached
to data items in the dataset

702

Generate a license file having a license tag

704

Receive the license file with a query

706

Authenticate the license file

~J
loze}

Run the query against the dataset

71

)

\ 4

Filter out data items that do not have the
license tag attached to produce a resultant

set
712

FIG. 7

U.S. Patent Jan. 26, 2016 Sheet 8 of 9 US 9,246,688 B1

f_ 800

Identify a dataset with license tags attached
to data items in the dataset

802

Deploy a license file having a license tag

804

Run a query against at least a portion of the
dataset

806

Identitfy data items in the query that have
the license tag from the license file attached

808

FIG. 8

U.S. Patent Jan. 26, 2016 Sheet 9 of 9 US 9,246,688 B1

¢ = 900

Computing Device(s) 902

Memory Device(s)

\O
—
[oze]

Dataset Manager

License Generator 920
License Verifier =~ 922
Processor(s)
9 Query Executor 924
I/O Devices Networking Devices
904 910 912
I I I

\
)

Display 914
Screen
91

FIG. 9

US 9,246,688 B1

1
DATASET LICENSING

BACKGROUND

Large datasets are often licensed by dataset consumers. As
an example, a geospatial dataset provider may place 900
terabytes (TB) of LiDAR data representing the United States
(US) into a distributed database. The geospatial dataset pro-
vider may then sell access to the dataset to dataset consumers.
Dataset consumers may, as an example, use the dataset to
generate digital elevation models.

Because of the size of some datasets or out of a desire to
retain control of some datasets, access to some datasets may
include running applications against the datasets directly.
Accordingly, the dataset may remain in a storage medium or
storage service with an application accessing the storage
medium directly, rather than the dataset being duplicated onto
another storage medium and sent to a dataset consumer for
processing locally by the dataset consumer.

Map-reduce is a programming model for processing large
datasets using a parallel, distributed method on a cluster of
processing devices. A map-reduce application includes a map
procedure that performs filtering and sorting and a reduce
procedure that performs a summary operation. A map-reduce
application generally runs on a cluster in parallel fashion. One
framework implementation for running map-reduce applica-
tions is APACHE™ HADOOP®. The map-reduce program-
ming model may be applied to the large datasets described
above in order to provide desired processing results from the
large datasets.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic overview of an example dataset
licensing system.

FIG. 2 is a schematic overview of an example dataset that
may be used in a dataset licensing system.

FIG. 3 is a schematic overview of an example distributed
database that may be used in a dataset licensing system.

FIG. 4 is a component block diagram illustrating an
example virtualized compute system to license datasets.

FIG. 5 is a component block diagram illustrating an
example dataset licensing system.

FIG. 6 is a sequence diagram illustrating dataset licensing.

FIG. 7 is a flowchart illustrating an example of a method to
license datasets.

FIG. 8 is a flowchart illustrating another example of a
method to license datasets.

FIG. 9 is block diagram illustrating an example of a com-
puting device that may be used for dataset licensing.

DETAILED DESCRIPTION

A dataset licensing technology is described that may allow
a dataset provider to manage licenses issued to dataset con-
sumers. As an example, various hedge funds may execute an
analysis on large, common datasets such as historical stock
ticker data from a dataset provider. Hedge fund companies or
other dataset consumers, often spend large sums of money for
access to these vast datasets. In this way, the various hedge
funds may be dataset consumers. While some hedge funds
may bring copies in-house so that they may run analysis
applications against these datasets, some datasets may remain
within a distributed database where the analysis applications
may be run on a virtualized computer cluster associated with
the distributed database, rather than duplicating the dataset

20

25

40

45

55

2

onto another storage medium and sending the dataset to a
dataset consumer for processing locally by the dataset con-
sumer.

The datasets are often large and the applications are often
computationally intensive. As such, distributed computing
techniques, such as the map-reduce model may be used to
quickly and efficiently execute these applications against the
datasets. The map-reduce model is a programming model for
processing large datasets using a parallel, distributed appli-
cation on a virtualized computer cluster. Because of the pro-
prietary nature of some of the datasets, and because some
dataset consumers may wish to purchase access to a limited
portion of the datasets, dataset providers may desire a mecha-
nism to license a portion of a dataset to a dataset consumer
and enforce the license when a dataset consumer’s applica-
tions and/or queries run against the dataset. In particular, data
items in the dataset may be tagged with license tags, and a
license file having a license tag may be deployed to the dataset
consumer. The consumer may then package the license file
with a query and/or application and submit package to be
executed against the dataset. The application and/or query
may be run against the dataset and data items that do not have
the license tag from the license file attached may be filtered
out.

FIG. 1 is a schematic overview of an example dataset
licensing system 100. The system 100 may include a dataset
provider 102 and a dataset consumer 106 communicatively
connected through the Internet 104. As an example, the
dataset provider 102 may be a government agency offering
census data located in Washington, D.C., while the dataset
consumer may be a medical research facility in Omaha, Nebr.
that may be using census data to correlate certain diseases
with demographic information provided through the census
data. Thus in the example, the dataset provider 102 and the
dataset consumer 106 may be located in separate parts of the
world and may be communicatively connected through the
Internet 104. It should be appreciated by those skilled in the
art, however, that the dataset provider 102 and the dataset
consumer 106 may be communicatively connected over a
private network, or may even be located in the same building
or office.

The dataset consumer 106 may have a user device 108 to
communicate with the dataset provider 102 over the Internet
104. The user device 108 may include devices such as desktop
computers, laptops, personal digital assistants (PDAs), wire-
less cellular communication devices (e.g. smart phones),
computer terminals or any other computational device that
may electronically connect to the dataset provider 102.

The dataset provider 102 may have a data store 110 having
a dataset 112 stored thereon. The dataset 112 may include
multiple data items 114. Each data item 114 may contain
multiple rows of data. A data engine 116 may provide inter-
action with the dataset 112 stored on the data store 110.
Therefore, data items 114 in the dataset 112 may be defined,
manipulated and controlled through the data engine 116. The
data items 114 in the dataset 112 may have attached license
tags identifying one or more licenses related to the data items.
For example, the dataset 112 may be LiDAR data represent-
ing the United States, and the data items 114 may include a
licensing tag representing a licensing subset of the dataset
112. For instance the dataset provider 102 may divide the
dataset 112 into geographic areas such as states in the United
States. Thus, the data items 114 may contain a licensing tag
such as “Colorado” or “New Hampshire.” In this way, the
dataset 112 may be provided with license tags attached to the
data items 114 in the dataset 112. More specifically, there may

US 9,246,688 B1

3

be one licensing tag for each data item 114 or there may a tag
with each data row in the data item.

The dataset provider 102 may generate a license file 118
having a license tag attached to enable a customer to access at
least one data item 114 to which the customer may purchase
access. For example, the dataset provider 102 may generate a
license file 118 with a license tag of “Colorado” where the
dataset consumer 106 may be interested in licensing a subset
of the dataset 112 including geospatial data in the State of
Colorado. The license file 118 may include an authentication
mechanism 120. One example of an authentication mecha-
nism may be calculating the hash value for license file 118
and signing the hash value in a license file 118 with a key to
form a signature. For instance, a cryptographic hash function,
such as the secure hash algorithm 1 (SHA-1) designed in part
by the United States” National Security Agency (NSA), may
be used to calculate the hash value for the license file 118.
Other existing hashing functions may be used too. Crypto-
graphic hash function are generally considered hash func-
tions that take an arbitrary block of data and return a fixed-size
bit string called the hash value. Hash values calculated with
cryptographic hash functions generally are such that any acci-
dental or intentional change to the input data will, with very
high probability, change the calculated hash value.

In another example, the license file 118 may be signed
using a digital signature. A digital signature generally
includes generating a pair of asymmetric cryptography keys.
Using a private key from the pair of asymmetric cryptography
keys a digital signature may be produced by the dataset pro-
vider. Using a public key from the pair of asymmetric cryp-
tography keys, a signature may be verified as authentic. One
example of an algorithm for generating a pair of asymmetric
cryptograph keys is the RSA method.

Upon providing licensing access to the dataset 112, the
dataset provider 102 may send the dataset consumer 106 the
license file 118 over the Internet 104. In doing so, the dataset
provider 102 and the dataset consumer 106 may desire secure
communication of the license file 118 over the Internet 104.
To that end, a secure communication connection 122 may be
used to transmit the license file 118 from the dataset provider
102 to the dataset consumer 106 over the Internet 104. For
instance, Hypertext Transfer Protocol Secure (HTTPS) may
be used or a virtual private network (VPN) tunnel may be
created through the Internet 104 to provide the secure com-
munication connection 122.

Once the dataset consumer 106 has the license file 118, the
dataset consumer 106 may send the license file with a query to
the dataset provider 102. For example, the dataset consumer
106 may write an application with one or more queries therein
and package the application with the license file 118 for
submission to the dataset provider 102. Thus, the dataset
provider 102 may receive the license file 118 with a query.
The data engine 116, in one example, may then be used to run
the application or the queries received. Prior to the data
engine 116 running the queries, the dataset provider 102 may
wish to authenticate the license file 118. For instance, the
dataset provider 102 may want to know whether the license
file 118 has been tampered with, or whether the license file
118 has been fabricated to masquerade as a genuine license
file. For example, the dataset consumer 106 may have
licensed a “Colorado” subset of a geospatial dataset. In doing
so, the license file 118 may have been generated referencing
“Colorado” as a license tag. However, an unscrupulous
dataset consumer may modify the license file 118 to reference
the entire United States, for instance. Thus, the dataset pro-
vider 102 may authenticate the license file 118 to ensure

10

15

20

25

30

35

40

45

50

55

60

65

4

authenticity of the license file 118 and thereby enforce the
license file 118 by checking the authentication mechanism
120.

In communicating the query and the license file 118 from
the dataset consumer 106 to the dataset provider 102, the
secure communication connection 122 may be used. After
receiving the query and license file 118, the query may be run
against at least a portion ofthe dataset 112 using, for example,
the data engine 116, and data items 114 may be identified that
have the license tag in the license file 118 attached thereto.
Identified data items may then, for example, be filtered out.
Alternatively, the query may be run against identified data
items that have the license tag from the license file attached.
In this way, the query may be run against a licensed subset of
the dataset 112. A resultant set may be stored on the data store
110 and notification made to the dataset consumer 106, or
alternatively, the resultant set may be communicated to the
dataset consumer 106 over the secure communication con-
nection 122 or directly over the Internet 104 via an unpro-
tected connection. In this way, the technology may provide
assurance to a dataset provider that a dataset consumer may
have access to a licensed portion of a dataset while being
restricted from unlicensed portions of the dataset when run-
ning an application and/or query against the dataset.

In an alternative example for FIG. 1, the dataset provider
102 may not send the dataset 112 to the dataset consumer 106
but the dataset may be copied to a processing instance or
processing engine (not shown) on the dataset provider 102
side. Oncethe dataset 112 has been processed, then the results
of processing the dataset 112 may be sent to the dataset
consumer 106. Avoiding the transfer of the dataset across the
internet or another wide area network (WAN), may reduce the
amount of time needed to get the results and may avoid data
transfer costs.

The data items 114 in the dataset 112 may be pre-tagged
with license tags, or the dataset provider 102 may run a
tagging process to tag items in the dataset with license tags. In
generating the license file 118, various formats may be used
including, for example, JavaScript object notation (JSON) or
any other file format that capable of expressing attribute-
value pairs. The dataset 112 is now described in further detail
with reference to FIG. 2.

Accordingly, FIG. 2 is a schematic overview of an example
dataset 200 that may be used in a dataset licensing system. As
depicted, the dataset 200 may include multiple data items.
Moreover, each data item, including the depicted data item
202, may include a data portion 204 and the license tag 206.

As an example, the datasets 200 may include information
about ocean floor topography or information about ocean
floor geological structures. Thus, the data item 202 may
include a data portion 204 that may include a longitude-
latitude coordinate, a radius and an elevation or geological
structure, for instance. The license tag 206, as an example,
may represent a silver, gold or platinum license to the dataset
200. A silver license, for instance, may include a relatively
crude resolution of the ocean floor. Data items within the
silver license may include 100 mile radiuses in the data por-
tions of the data items. In contrast, a gold license may include
a medium resolution of the ocean floor with 10 mile radiuses,
and a platinum license may include a high-resolution of the
ocean floor with 100 feet radiuses. Other examples of the
dataset 200 may include genome data for various species,
neuroimaging of human brains or other animals, financial
data and salinity levels at various points in estuaries around
the world.

A dataset 200 may be provided in various formats includ-
ing a JavaScript notation object (JSON) file, a spreadsheet, a

US 9,246,688 B1

5

relational database, a comma-separated values (CSV) file, a
not only structured query language (NoSQL) database, an
object-oriented database or any other means whereby a
dataset may be provided as a tagged dataset. In some
examples, a dataset may be provided which is untagged in an
original format. In this way, data items in the dataset may be
tagged with license tags to transform an untagged dataset in
an original format to a dataset that is tagged with license tags
prior to running the query against the dataset.

As one example, the dataset 200 may be provided in a
distributed database such as the Hadoop Database (HBase).
HBase is generally run on top of a distributed file system such
as the Hadoop Distributed File System (HDFS™). Moreover,
HDFS may be used in conjunction with a map-reduce frame-
work on a computer cluster such as APACHE™ HADOOP®.

APACHE™ HADOOP® is a framework that generally
supports data-intensive distributed applications. In particular,
APACHE™ HADOOP® may support the running of map-
reduce applications on large computer clusters. Map-reduce
is a programming model in which an application is divided
into many small fragments of work, each of which may be
executed or re-executed on any node in the computer cluster.
Additionally, APACHE™ HADOOP® may provide a distrib-
uted file system (e.g. HDFS™) that stores data on compute
nodes within the computer cluster. Thus, the distributed file
system may provide relatively high aggregate processing
power across the computer cluster for quick access for pro-
cessing by the map-reduce application. In addition to a rela-
tively high aggregate processing power, both the map portion
and the reduce portion of a map-reduce application may be
enhanced by use of the distributed file system since many
distributed file systems (e.g. HDFS™) are designed so that
node failures in the computer cluster are automatically
handled through data replication across the distributed file
system. Moreover, frameworks such as APACHE™
HADOOP® may enable map-reduce applications to work
with hundreds or thousands of independent computers and
exabytes or petabytes of data. Thus, large datasets 200 may be
used by applications to produce results for a customer.

While APACHE™ HADOOP® is written in the JAVA®
programming language, and while many map-reduce appli-
cations using APACHE™ HADOOP® are written in the
JAVA® programming language, a person skilled in the art
should recognize that any programming language may be
used to implement a map or reduce portion of a map-reduce
application.

Additionally, the license tag 206 may include multiple
tags. For example, with global geospatial data, the data item
202 may represent a geographic point in southern Germany
and the license tag 206 may include a tag for the Free State of
Bavaria (e.g. “BY”) as well as a tag for the Federal Republic
of Germany (e.g. “DE”). In this way, the license tag 206
includes at least two tags. Other tags may also be included
such as the European Union (e.g. “EU”) or other dimensional
information, such as the Eurozone (e.g. “EUR” for financial
analyses) or the German language (e.g. “DEU”). Thus, the
licensing tags may provide varying levels of licensing scope
for the same data items 202 or data 204.

To further describe the technology, reference is now made
to FIG. 3 which is a schematic overview of an example
distributed database 300 that may be used in a dataset licens-
ing system. As depicted, the distributed database 300 may
include multiple data stores 302a-¢. Each data store 302 may
contain one or more data items 304a-¢. As a group, the data
items 304a-t may comprise a dataset. The data items 304a-¢
may be replicated across one or more data stores 302 to

10

15

20

25

30

35

40

45

50

55

60

65

6

provide fault tolerance or higher data access throughput.
Thus, the dataset may be provided in the distributed database
300.

Each data store 302 may reside on one or more computers
of' a computer cluster. Alternatively, a single computer in a
computer cluster may contain multiple data stores 302. More-
over, computers in the computer cluster may be grouped
together on a server rack and connected to various network
components such as switches and routers. Thus, the distrib-
uted database may operate on top of a distributed file system.

Proximity of the computers in the computer cluster may be
defined by physical proximity on the same computer rack, for
instance, or through network proximity. For example, com-
puters in the computer cluster connected to a common net-
working switch may be proximately close in the network,
since communication between the computers connected to
the common networking switch may not have to traverse a
networking router.

Likewise, data stores 302 may be proximate to one another
as defined by physical proximity or communicative latency,
for example. Data stores 302 in the same computer within a
computer cluster may be both physically proximate and com-
municatively proximate, since data transmitted between data
stores in the same computer may not have to traverse the
computer network.

Proximity of data stores 302 and computers in the com-
puter cluster may affect efficiency of a map-reduce applica-
tion. In executing a map-reduce application, data may need to
be obtained from remote data stores 302. Thus, proper or
improper organization of the dataset across the distributed
database 300 may increase or decrease efficient processing of
the dataset.

FIG. 4 is a component block diagram illustrating an
example virtualized compute system 400 that may be used to
license datasets. In particular, the virtualized compute service
400 is depicted that illustrates one environment in which the
technology described herein may be used. The virtualized
compute service 400 is one type of environment that includes
various virtualized service resources that may be used, for
instance, to host a computer cluster or virtualized computing
instances. For example, the virtualized compute service may
implement nodes of a data store cluster or computer cluster
using the instances, as described later in the virtualized com-
pute service. A specific deployment of the technology on a
virtualized compute service is described with additional
detail in FIG. 5.

The virtualized compute service 400 (i.e., the cloud pro-
vider) is capable of delivery of computing and storage capac-
ity as a service to a community of end recipients. In one
example, the virtualized compute service may be established
for an organization by or on behalf of the organization. That
is, the virtualized compute service 400 may offer a “private
cloud environment.” In another example, the virtualized com-
pute service 400 may support a multi-tenant environment,
wherein a plurality of customers may operate independently
(i.e., a public cloud environment). Generally speaking, the
virtualized compute service 400 may provide the following
models: Infrastructure as a Service (“IaaS”), Platform as a
Service (“PaaS”), and/or Software as a Service (“SaaS”).
Other models may be provided. For the IaaS model, the
virtualized compute service 400 may offer computers as
physical or virtual machines and other resources. The virtual
machines may be run as guests by a hypervisor, as described
further below. The PaaS model delivers a computing platform
that may include an operating system, programming lan-
guage execution environment, database, and web server.
Application developers may develop and run their software

US 9,246,688 B1

7

solutions on the virtualized compute service platform without
incurring the cost of buying and managing the underlying
hardware and software. The SaaS model allows installation
and operation of application software in the virtualized com-
pute service. End users may access the virtualized compute
service 400 using networked client devices, such as desktop
computers, laptops, tablets, smartphones, etc. running web
browsers or other lightweight client applications, for
example. Those skilled in the art will recognize that the vir-
tualized compute service 400 may be described as a “cloud”
environment.

The particularly illustrated virtualized compute service
400 includes a plurality of server computers 402a-d. While
four server computers are shown, any number may be used,
and large centers may include thousands of server computers.
The server computers 402a¢-d may provide computing
resources for executing software instances 406a-d. Instances
406a-d may, for example, be virtual machines. As known in
the art, a virtual machine is an instance of a software imple-
mentation of a machine (i.e. a computer) that executes appli-
cations like a physical machine. In the example of virtual
machine, each of the servers 402a-d may be configured to
execute an instance manager 408a-d capable of executing the
instances. The instance manager 408a-d may be a hypervisor
oranother type of program configured to enable the execution
of multiple instances 406 on a single server. Additionally,
each of the instances 406 may be configured to execute one or
more applications.

It should be appreciated that although this discussion is
primarily in the context of virtual machines, other types of
instances may be utilized with the concepts and technologies
disclosed herein. For instance, the technologies disclosed
herein may be utilized with storage resources, data commu-
nications resources, and with other types of computing
resources. The technology might also execute all or a portion
of an application directly on a computer system without uti-
lizing virtual machine instances.

One or more server computers 404 may be reserved for
executing software components for managing the operation
of the server computers 402 and the instances 406. For
example, a server computer 404 may execute a management
component 410. A customer may access the management
component 410 to configure various aspects of the operation
of'the instances 406 purchased by the customer. For example,
the customer may purchase, rent or lease instances and make
changes to the configuration of the instances. The customer
may also specify settings regarding how the purchased
instances are to be scaled in response to demand. An auto
scaling component 412 may scale the instances 406 based
upon rules defined by the customer. The auto scaling compo-
nent 412 may allow a customer to specity scale-up rules for
use in determining when new instances should be instantiated
and scale-down rules for use in determining when existing
instances should be terminated, for example. The auto scaling
component 412 may consist of a number of subcomponents
executing on different server computers 402 or other comput-
ing devices. The auto scaling component 412 may monitor
available computing resources over an internal management
network and modify resources available based on need.

A deployment component 414 may be used to assist cus-
tomers in the deployment of new instances 406 of computing
resources. The deployment component may have access to
account information associated with the instances, such as
who is the owner of the account, credit card information,
country of the owner, etc. The deployment component 414
may receive a configuration from a customer that includes
data describing how new instances 406a-c may be config-

10

15

20

25

30

35

40

45

50

55

60

65

8

ured. For example, the configuration may specify one or more
applications to be installed in new instances 406a-c, provide
scripts and/or other types of code to be executed for config-
uring new instances 406a-c, provide cache logic specifying
how an application cache should be prepared, and other types
of information. The deployment component 414 may utilize
the customer-provided configuration and cache logic to con-
figure, prime, and launch new instances 406. The configura-
tion, cache logic, and other information may be specified by
a customer using the management component 410 or by pro-
viding this information directly to the deployment component
414.

Customer account information 416 may include any
desired information associated with a customer of the multi-
tenant environment. For example, the customer account
information may include a unique identifier for a customer, a
customer address, billing information, licensing information,
customization parameters for launching instances, schedul-
ing information, auto-scaling parameters, etc. As described
above, the customer account information 416 may also
include security information used in encryption of asynchro-
nous responses to API requests. By “asynchronous” it is
meant that the API response may be made at any time after the
initial request and with a different network connection.

A network 430 may be utilized to interconnect the server
computers 402a-d and the server computers 404, 450. The
network 430 may be a local area network (LAN) and may be
connected to a Wide Area Network (WAN) 440 or the internet
so that end users may access the virtualized compute service
400. It should be appreciated that the network topology illus-
trated in FIG. 5 has been simplified and that many more
networks and networking devices may be utilized to intercon-
nect the various computing systems disclosed herein.

A server computer 450 is shown that may be a web server
used to deliver web services to a plurality of client computers.
The server 450 may be configured to respond to API requests
asynchronously and to use the customer account 416 if
needed in generation of the response. In one example, gen-
eration of the API response may include using security infor-
mation in the API request coordinated with security informa-
tion in the customer account. For example, security
information regarding how to encrypt the response may be
stored in the customer account. As another example, a cus-
tomer may request the license file through an API on the
server 450 and in response to the request may be sent the
license file. Moreover, in using such an AP, an access control
policy may be applied by the server 450. For instance, certain
users may be identified and granted access to the license file
through an API on the server 450, while other users may be
denied access to the license file.

To more clearly describe the technology, reference is now
made to FIG. 5 in which a component block diagram illus-
trating an example dataset licensing system 500 is shown. The
dataset licensing system 500 may be used to implement the
functionality heretofore described with reference to FIGS.
1-4 or other exemplary functionality discussed below. The
virtualized compute service 400, discussed with reference to
FIG. 4, may be one environment in which the components of
the dataset licensing system 500 may be implemented. More
particularly, the virtualized compute service 400 shows some
implementation details of the virtualized compute service
502 which may be used, as depicted, to host a computer
cluster or virtualized computing instances. For example, the
computer cluster 520 may be used to host a distributed data-
base system with a dataset provided thereon. The dataset
licensing system 500 may include a virtualized compute ser-

US 9,246,688 B1

9

vice 502. The virtualized compute service 502 may be com-
municatively connected over the Internet 508 to a dataset
consumer 510.

The virtualized compute service 502 may include a plural-
ity of commodity computer systems, as discussed in FIG. 4.
For example, computers employing standard or common
architectures may be used such as central processing units
(CPUs) implementing the x86 or x86-64 instruction set archi-
tectures. Other components such as hard disks (HDs) and
random access memory (RAM) chips may also employ stan-
dard or common interfaces such as serial advanced technol-
ogy attachment (SATA), small computer system interface
(SCSI), integrated drive electronics (IDE), fiber channel (FC)
or dual in-line memory modules (DIMMS). Moreover, net-
working components may employ standard protocol such as
Ethernet and the Internet protocol (IP).

The virtualized compute service 502 may include one or
more hypervisors, as discussed in FIG. 4. A hypervisor may
be computer software, firmware or hardware that creates and
runs virtual machines. The hypervisor may run one or more
guest virtual machines on a host machine computer. The
hypervisor may present the guest virtual machines’ guest
operating systems with a virtual operating platform and may
manage the execution of the virtual machines’ guest operat-
ing systems. Multiple instances of a variety of operating
systems may share the virtualized hardware resources.

The virtualized compute service 502 may contain the
nodes 512a-i, 516 that have been allocated to form a cluster
520. The cluster 520 may be used to execute map-reduce
applications, database applications, or other distributed appli-
cations. Each node within the cluster 520 may contain, for
example a virtual machine (VM), such as, an interpreter
engine or a bytecode virtual machine. The JAVA® virtual
machine, for instance, may be used where the application
code is provided in JAVA® bytecode. As an alternative to
such virtual machines or interpreter engines, a native appli-
cation loader may load applications that include native
machine code to be natively executed on the nodes 512a-i,
516 within the cluster 520.

In executing a map-reduce application, the cluster 520 may
use a controller node 516 (or a set of controller nodes). Map-
reduce applications may be submitted to the controller node
516 for execution across the cluster 520. The controller node
516 may then divide the computation work into tasks and
push computational work out to the nodes 5124-i. Computa-
tion work may be performed by the nodes 512a-i in the cluster
520. Additionally, the controller node 516 may also perform
some of this computation work and may utilize the data store
518 for storing portions of the dataset being worked on by the
map-reduce application.

As previously discussed with reference to FIG. 1, for
example, the dataset consumer 510 may include a user device
522. The user device may contain various files including the
license file 526 and application files 524. As an example, the
application files 524 may contain application code for a map-
reduce application. The license file 526 may contain a signed
hash 530 generated using a hash function and/or an asymmet-
ric key.

Once the dataset consumer 510 has licensed access to a
dataset in the computer cluster 520, the dataset provider may
send the dataset consumer 510 the license file 526 for storage
in the user device 522.

The dataset consumer 510 may then submit the license file
526 with the application files 524 to the computer cluster 520.
The application files 524 may include queries to be executed
against a dataset provided across the computer cluster 520 or
processing to be performed with data items that have been

10

15

20

25

30

35

40

45

50

55

60

65

10

licensed. For example, a query may be used to obtain the data
that may be used in a mapping procedure in a distributed
map-reduce application run across the computer cluster 520.

The license file 526 may also include a license tag refer-
encing data items in the dataset tagged with the same license
tag. In this way, a dataset may be provided with license tags
attached to data items in the dataset and dataset licensing may
be enforced through the submission of the license file 526.
More particularly, by deploying the license file 526 to the user
device 522, the user device 522 may be used to submit the
application files 524 (e.g. files that may contain one or more
queries or processing applications to be run against the
dataset) to the computer cluster 520. Upon receiving the
application files 524 and the license file 526, the computer
cluster may then enforce the license file 526 (e.g. by using the
signed hash 530 and the license tag 528). In deploying the
license file 526, a hash value may be calculated for the license
file 526 and the license file 526 may be signed with a key to
form a signature as depicted by the signed hash 530. Thus, in
enforcing the license file 526 a signature and hash may be
verified and data items may be identified that have the license
tag 528 attached thereto.

As the dataset may be provided in a distributed database
running on top of a distributed file system, proximity of the
data stores 514a-i and nodes 5124a-i in the computer cluster
520 may affect the efficiency of the map-reduce application or
other queries being executed against the dataset. In executing
the map-reduce application or other queries, data may need to
be obtained from data stores 514a-ilocated in a various nodes
514a-i. Thus, organization of the dataset across the computer
cluster 520 may increase or decrease efficient processing of
the dataset. Accordingly, grouping data items in a dataset that
have a common license tag onto one or more proximate nodes
in the computer cluster may increase performance. Alterna-
tively, spreading data items in a data set that have a common
license tag across non-proximate nodes in the computer clus-
ter may advantageously increase reliability and fault toler-
ance. Grouping these data items in the dataset according to
common license tag may be done by sorting the data items by
license tag when arranging the data items on the nodes 514. A
distributed database management system may be program-
matically enhanced to perform some or all of this sorting and
placement functionality automatically and transparently.

The virtualized compute service 502 may interface with
the Internet 508. In this way, the virtualized compute service
502 may be able to communicate with the user device 522.
Moreover the virtualized compute service 502 may include
virtual networks between the nodes 512.

Alternatively, the dataset consumer 510 may communicate
with the virtualized compute service 502 over any useful
computing network, including an intranet, the Internet, a local
area network (LAN), a wide area network (WAN), a wireless
data network, or any other such network or combination
thereof, and may utilize a variety of protocols for transmis-
sion thereon, including for example, Internet Protocol (IP),
the transmission control protocol (TCP), user datagram pro-
tocol (UDP) and other networking protocols. Components
utilized for such a system may depend at least in part upon the
type of network and/or environment selected. Communica-
tion over the network may be enabled by wired or wireless
connections and combinations thereof.

Based on the aforementioned parameters, the user device
522 may be devices such as, but not limited to, a desktop
computer, a laptop, a tablet, a mobile device, a television, a
cell phone, a smart phone, a hand held messaging device, a
set-top box, a gaming console, a custom data assistant, an

US 9,246,688 B1

11

electronic book reader, heads up display (HUD) glasses, or
any device with a display that may receive and present the
information.

The virtualized compute service 502 may comprise, for
example, one or more server computers, virtual server
images, or any other system providing computing capability.
As one example, plurality of nodes 512 may be employed that
are arranged, for example, in one or more server banks or
computer banks or other arrangements to form a distributed
computing system.

Various processes and/or other functionality, as discussed
herein, may be executed in the licensing system 500 accord-
ing to various examples. The virtualized compute service
502, may for example, provide some central server process-
ing services while the user device 522 may provide local
processing services and interface processing services to inter-
face with the services of the virtualized compute service 502.
Therefore, it is envisioned that processing services, as dis-
cussed herein, may be centrally hosted functionality or a
service application that may receive requests and provide
output to other services or customer devices.

For example, the services may be considered on-demand
computing that is hosted in a server, cloud, grid, or cluster
computing system. An application program interface (API)
may be provided for each service to enable a second service to
send requests to and receive output from the first service.
Such APIs may also allow third parties to interface with the
service and make requests and receive output from the ser-
vice. Like the various processing capabilities on the user
device 522, a processor may provide processing instructions
by communicating with a memory on each node 5124-i
within the computer cluster 520. That is, the memory device
may include instructions operable to be executed by the pro-
cessor to perform a set of actions. The processor and/or the
memory may directly or indirectly communicate with a data
store 514a-i.

Various data may be stored in the data stores 514 that may
be accessible to the node 512. The term “data store” may refer
to any device or combination of devices capable of storing,
accessing, organizing and/or retrieving data, which may
include any combination and number of data servers, rela-
tional databases, object oriented databases, cloud storage sys-
tems, data storage devices, data warehouses, flat files and data
storage configuration in any centralized, distributed, or clus-
tered environment. The storage system components of the
data store 514 may include storage systems such as a SAN
(Storage Area Network), cloud storage network, volatile or
non-volatile RAM, optical media, or hard-drive type media. A
data store 514 may be representative of a plurality of data
stores 514.

The dataset licensing system 500 may include a licensing
manager 532 within the virtualized compute service 502 to
manage licenses issued to dataset consumers. The licensing
manager 532 may include a set of software modules, includ-
ing a dataset manager module 534, a license generator mod-
ule 536, a license verifier module 538 and a query executor
module 540. The dataset manager module 534 may provide a
dataset with license tags attached to data items in the dataset.
The license generator module 536 may generate a license file
having alicense tag. The license verifier 538 may validate that
the license file is correctly formatted and verify authenticity
of the license file as queries and applications are executed
against the dataset. Further, the query executor 540 may run a
query against the dataset and enforce the license file.

In an alternative example configuration, the dataset and
data items may be located in a separate data storage cluster
(e.g., an HBase cluster) (not shown) that is separate from a

10

15

20

25

30

35

40

45

50

55

60

12

computer cluster 520. In this case, the licensing manager 532
may use the license file 526 to determine the appropriate
dataset(s) to be moved from the data store cluster to the
computer cluster to be processed 520. The licensing manager
532 may also execute or arrange for a transfer of the appro-
priate dataset(s). Once a result is obtained from the computer
cluster 520, then the result may be sent to a dataset consumer
510. This arrangement can provide a secure interaction with
data to ensure that the data is not passed onto third parties and
to ensure the integrity of the data.

FIG. 6 is a sequence diagram 600 illustrating dataset
licensing. In particular, the sequence diagram 600 illustrates
a sequence of interactions between a dataset provider 602 and
a dataset consumer 604. The computer cluster or other ser-
vices within the virtualized compute service may be used by
the dataset provider 602 as described with reference to FIG. 4.

After a licensing agreement has been made, the dataset
provider 602 may generate a license file 606 and send the
license file 608 to the dataset consumer 604. The dataset
consumer 604 may then provide or develop an application,
such as a map-reduce application, to execute against the
licensed dataset. In preparing to execute the application, the
dataset consumer 604 may package the application as indi-
cated by 610, and distribute the application to the dataset
provider with the license file as indicated by 612. Alterna-
tively, the application could be set up on a third party’s com-
puting cluster or the consumer’s own computing cluster. In
distributing the application, the dataset consumer 604 may
package and submit the license file with the application or
may submit the license file in a separate procedure.

Upon receiving the license file, the dataset provider 602
may verify the license file 614. For example, a signed hash
may be computed and compared with a signed hash value
contained in the license file to determine whether the license
file is authentic or whether the license file has been tampered
with. After verifying the license file 614, the dataset provider
602 may run the application 616 and may provide results 618
to the dataset consumer 604. Results 618 may be provided
after the application has been fully executed, or in some
examples may be provided in a streaming fashion as process-
ing is finished on various parts of the dataset.

FIG. 7 is a flowchart illustrating an example of a method
700 to enforce dataset licensing. In method element 702, a
dataset may be provided with license tags attached to data
items in the dataset. As an example, a geospatial dataset
provider may provide a dataset of LiDAR (light and radar)
data representing the United States. License tags may be
attached to individual LiDAR data points referencing, for
example, a geographic space. The geospatial dataset provider
may then sell access to the dataset, or a subset thereof, to
dataset consumers. Dataset consumers may, as an example,
use the dataset to generate digital elevation models.

In method element 704, a license file may be generated
having a license tag. A license file in the geospatial example
may include a license tag of “Colorado” where a dataset
consumer may be interested in licensing a subset of the
dataset with geospatial data in the State of Colorado. In gen-
erating the license file, various formats may be used includ-
ing, for example, JavaScript object notation (JSON) or any
other file format that is capable of expressing attribute-value
pairs.

In method element 706, the license file may be received,
and, in method element 708, the license file may be authen-
ticated. One example of an authentication mechanism may be
calculating the hash value for license file and signing the hash
value in the license file 118. Thus, the license file may be

US 9,246,688 B1

13

authenticated by comparing the license file with a recalcu-
lated hash value and signature.

In method element 710, the query may be run against the
dataset, and, in method element 712, data items may be fil-
tered out that do not have the license tag attached to produce
a resultant set. For example, a query may be run as part of a
map procedure in a distributed map-reduce application run
across the computer cluster. The dataset may be distributed
across the computer cluster.

FIG. 8 is a flowchart illustrating another example of a
method 800 to enforce dataset licensing. In method element
802, a dataset may be provided with license tags attached to
data items in the dataset. A license tag, as an example, may
represent a silver, gold or platinum license to the dataset. A
silver license, for instance, may include a relatively crude
resolution of the ocean floor. Data items within the silver
license may include 100 mile radiuses is in the data portions
of the data items. In contrast, a gold license may include a
medium resolution of the ocean floor with 10 mile radiuses,
and a platinum license may include a high-resolution of the
ocean floor with 100 feet radiuses. Other examples of the
dataset may include genome data for various species, neu-
roimaging of human brains or other animals, financial data
and salinity levels at various points in estuaries around the
world.

In method element 804, a license file may be deployed
having a license tag. In deploying the license file, a hash value
may be calculated for the license file and the license file may
be signed with a key to form a signature, as one example. In
method element 806, a query may be run against at least a
portion of the dataset with the license file, and in the method
element 808, data items may be identified that have the
license tag attached. An application with queries to the
dataset, for example, may be submitted with the license file.
The license file may then be enforced, for instance, by using
an authentication mechanism to authenticate the license file
and filter out non-licensed data items.

The technology may allow dataset providers to enforce
licenses issued to dataset consumers. Distributed computing
techniques, such as the map-reduce model may be used to
quickly and efficiently execute applications against these
datasets. In this way, dataset providers may be able to license
portion of a dataset to a dataset consumer and may have a
mechanism to enforce the license when a dataset consumer’s
application runs against the dataset. Thus, dataset providers
may be assured that a dataset consumer may only access a
licensed portion of a dataset. More importantly, the dataset
consumer may be restricted from using unlicensed portions of
the dataset when running an application against the dataset.

FIG. 9 is block diagram illustrating an example of a com-
puting device 900 that may be used for dataset licensing. In
particular, the computing device 902 illustrates a high level
example of a device on which modules of the disclosed tech-
nology may be executed. The computing device 902 may
include one or more processors 904 that are in communica-
tion with memory devices 906. The computing device 902
may include a local communication interface 924 for the
components in the computing device. For example, the local
communication interface may be a local data bus and/or any
related address or control busses as may be desired.

The computing device 902, for instance, may be used for
data access. For example, the computing device 902 may be
used to secure computer instructions of a distributed applica-
tion. The memory device 906 may contain a set of modules
918 that are executable by the processor(s) 904 and data for
the modules. Located in the memory device 906 may be the
set of modules, including a dataset manager module 918, a

10

15

20

25

30

35

40

45

50

55

60

65

14

license generator module 920, a license verifier module 922,
a query executor module 924 and other modules executable
by the processor 904. The set of modules may execute the
functions described earlier. For example, the dataset manager
module 918 may provide a dataset with license tags attached
to data items in the dataset. The license generator module 920
may generate a license file having a license tag. The license
verifier 922 may verify authenticity of the license file. The
query executor 924 may run the query against the dataset and
enforce the license file. A data store 908 may also be located
in the memory device 906 for storing data related to the
modules and other applications along with an operating sys-
tem that is executable by the processor(s) 904.

Other applications may also be stored in the memory
device 906 and may be executable by the processor(s) 904.
Components or modules discussed in this description that
may be implemented in the form of software using high level
programming languages that are compiled, interpreted or
executed using a hybrid of the methods. Thus, a communica-
tion interface may be used to communicate the license file, to
receive a query and send a result from the query

The computing device may also have access to /O (input/
output) devices 910 that are usable by the computing devices.
An example of an I/O device is a display screen 916 that is
available to display output from the computing devices. Other
known I/O devices may be used with the computing device as
desired. Networking devices 912 and similar communication
devices may be included in the computing device. The net-
working devices 912 may be wired or wireless networking
devices that connect to the internet, a LAN, WAN, or other
computing network.

The components or modules that are shown as being stored
in the memory device 906 may be executed by the
processor(s) 904. The term “executable” may mean an appli-
cation file thatis in a form that may be executed by a processor
904. For example, an application in a higher level language
may be compiled into machine code in a format that may be
loaded into a random access portion of the memory device
906 and executed by the processor 904, or application code
may be loaded by another executable application and inter-
preted to generate instructions in a random access portion of
the memory to be executed by a processor. The executable
application may be stored in any portion or component of the
memory device 906. For example, the memory device 906
may be random access memory (RAM), read only memory
(ROM), flash memory, a solid state drive, memory card, a
hard drive, optical disk, floppy disk, magnetic tape, or any
other memory components.

The processor 904 may represent multiple processors and
the memory device 906 may represent multiple memory units
that operate in parallel to the processing circuits. This may
provide parallel processing channels for the processes and
data in the system. The local communication interface 914
may be used as a network to facilitate communication
between any of the multiple processors and multiple memo-
ries. The local communication interface 914 may use addi-
tional systems designed for coordinating communication
such as load balancing, bulk data transfer and similar systems.

While the flowcharts presented for this technology may
imply a specific order of execution, the order of execution
may differ from what is illustrated. For example, the order of
two more blocks may be rearranged relative to the order
shown. Further, two or more blocks shown in succession may
be executed in parallel or with partial parallelization. In some
configurations, one or more blocks shown in the flow chart
may be omitted or skipped. Any number of counters, state
variables, warning semaphores, or messages might be added

US 9,246,688 B1

15

to the logical flow for purposes of enhanced utility, account-
ing, performance, measurement, troubleshooting or for simi-
lar reasons.

Some of the functional units described in this specification
have been labeled as modules, in order to more particularly
emphasize their implementation independence. For example,
amodule may be implemented as a hardware circuit compris-
ing custom VLSI circuits or gate arrays, off-the-shelf semi-
conductors such as logic chips, transistors, or other discrete
components. A module may also be implemented in program-
mable hardware devices such as field programmable gate
arrays, programmable array logic, programmable logic
devices or the like.

Modules may also be implemented in software for execu-
tion by various types of processors. An identified module of
executable code may, for instance, comprise one or more
blocks of computer instructions, which may be organized as
an object, procedure, or function. Nevertheless, the
executables of an identified module need not be physically
located together, but may comprise disparate instructions
stored in different locations which comprise the module and
achieve the stated purpose for the module when joined logi-
cally together.

Indeed, a module of executable code may be a single
instruction or many instructions and may even be distributed
over several different code segments, among different appli-
cations and across several memory devices. Similarly, opera-
tional data may be identified and illustrated herein within
modules and may be embodied in any suitable form and
organized within any suitable type of data structure. The
operational data may be collected as a single dataset, or may
be distributed over different locations including over different
storage devices. The modules may be passive or active,
including agents operable to perform desired functions.

The technology described here may also be stored on a
computer readable storage medium that includes volatile and
non-volatile, removable and non-removable media imple-
mented with any technology for the storage of information
such as computer readable instructions, data structures, appli-
cation modules, or other data. Computer readable storage
media include, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, magnetic cas-
settes, magnetic tapes, magnetic disk storage or other mag-
netic storage devices, or any other computer storage medium
which may be used to store the desired information and
described technology.

The devices described herein may also contain communi-
cation connections or networking apparatus and networking
connections that allow the devices to communicate with other
devices. Communication connections are an example of com-
munication media. Communication media typically embod-
ies computer readable instructions, data structures, applica-
tion modules and other data in a modulated data signal such as
a carrier wave or other transport mechanism and includes any
information delivery media. A “modulated data signal”
means a signal that has one or more of'its characteristics set or
changed in such a manner as to encode information in the
signal. By way of example and not limitation, communication
media includes wired media such as a wired network or
direct-wired connection and wireless media such as acoustic,
radio frequency, infrared and other wireless media. The term
computer readable media as used herein includes communi-
cation media.

Reference was made to the examples illustrated in the
drawings and specific language was used herein to describe
the same. It will nevertheless be understood that no limitation

10

20

25

30

35

40

45

50

55

60

65

16

of'the scope of the technology is thereby intended. Alterations
and further modifications of the features illustrated hereinand
additional applications of the examples as illustrated herein
are to be considered within the scope of the description.

Furthermore, the described features, structures, or charac-
teristics may be combined in any suitable manner in one or
more examples. In the preceding description, numerous spe-
cific details were provided, such as examples of various con-
figurations to provide a thorough understanding of examples
of the described technology. It will be recognized, however,
that the technology may be practiced without one or more of
the specific details, or with other methods, components,
devices, etc. In other instances, well-known structures or
operations are not shown or described in detail to avoid
obscuring aspects of the technology.

Although the subject matter has been described in lan-
guage specific to structural features and/or operations, it is to
be understood that the subject matter defined in the appended
claims is not necessarily limited to the specific features and
operations described above. Rather, the specific features and
acts described above are disclosed as example forms of
implementing the claims. Numerous modifications and alter-
native arrangements may be devised without departing from
the spirit and scope of the described technology.

What is claimed is:

1. A computer-implemented method to license datasets,
comprising:

under control of one or more computer systems configured

with executable instructions:

providing a dataset with license tags attached to data
items in data rows in the dataset, wherein each data
row for the data items comprises a license tag and the
license tags identify at least one license that is asso-
ciated with the each data row for the data items, using
a processor;

generating a license file having a selected license tag,
using the processor;

generating a digital signature for the license file, wherein
a hash value is calculated for the license file and the
hash value is signed with a key;

receiving the license file with a query;

authenticating the license file by verifying the digital
signature, using the processor;

running the query against the dataset, using the proces-
sor; and

filtering out data items in data rows that do not have the
selected license tag attached to produce a resultant set,
using the processor.

2. The method of claim 1, further comprising tagging data
items in the dataset with license tags prior to running the
query against the dataset.

3. The method of claim 1, wherein the dataset is provided
in a distributed database.

4. The method of claim 1, wherein the query is part of a map
procedure in a distributed map-reduce application run across
a computer cluster.

5. A computer implemented method to license datasets,
comprising:

under control of one or more computer systems configured

with executable instructions:

identifying a dataset in a distributed database that oper-
ates on top of a distributed file system having license
tags attached to data items in data rows, wherein each
data row for the data items comprises a license tag and
the license tags identify at least one license that is
associated with the each data row for the data items in
the dataset, using a processor;

US 9,246,688 B1

17

deploying a license file having a selected license tag
used in querying the dataset, using the processor;

running a query against at least a portion of the dataset,
using the processor; and

identifying data items in the query that have the selected
license tag from the license file attached to the data
items, using the processor.

6. The method of claim 5, wherein the license file is a
JavaScript Object Notation (JSON) file.

7. The method of claim 5, wherein the dataset is provided
in at least one of a JavaScript Object Notation (JSON) file, a
spreadsheet, a relational database, a comma-separated values
(CSV) file, a not only structured query language (NoSQL)
database, or an object-oriented database.

8. The method of claim 5, wherein each data row for the
data items further comprise, a first data row having a license
tag associated with a first license and a second data row
having a second license tag associated with a second license
and the second data row having the second license tag is
filtered out of the data items to produce a resultant set con-
taining the first data row.

9. The method of claim 5, wherein the query is part of a map
procedure in a distributed map-reduce application run across
a computer cluster.

10. The method of claim 9, further comprising grouping
data items in the dataset that have a common license tag onto
one or more proximate nodes in the computer cluster.

11. The method of claim 5, wherein deploying the license
files comprises:

calculating a hash value for the license file; and

signing the hash value with a key to form a signature.

12. The method of claim 11, further comprising verifying
the signature.

5

10

15

20

25

30

18

13. The method of claim 5, wherein the query is run against
identified data items that have the license tag from the license
file attached.

14. The method of claim 5, wherein deploying the license
file comprises:

receiving through a web service application programming
interface (API) a request for the license file; and

sending the license file in response to the request.

15. A system to license datasets, comprising:

a processor;

a memory device including instructions to be executed by
the processor;

a distributed database management system operating on
top of a distributed file system to provide a dataset with
license tags attached to data items in data rows, wherein
each data row for the data items comprises a license tag
and the license tags identify at least one license that is
associated with the each data row for the data items in
the dataset;

a license generator to generate a license file having a
selected license tag;

a communication interface to communicate the license file,
to receive a query and to send a result from the query;

a license verifier to verify authenticity of the license file;
and

a query executor to run the query against the dataset and to
identify data items that have the selected license tag
attached and thereby apply the license file.

16. The system of claim 15, wherein the query is part of a
map procedure in a distributed map-reduce application run
across a computer cluster.

17. The system of claim 16, further comprising grouping
items in the dataset that have a common license tag onto one
or more proximate nodes in the computer cluster.

#* #* #* #* #*

